Calculus & Analysis Calculator

Comprehensive tools for derivatives, integrals, limits, and sequences. Get step-by-step solutions for all your calculus problems with interactive visualizations.

Ultimate Calculus & Analysis Calculator

Our comprehensive calculus calculator provides powerful tools for solving a wide range of calculus and analysis problems. Whether you're working with derivatives, integrals, limits, or sequences, our calculator has you covered. Get accurate results with step-by-step solutions to enhance your understanding of calculus concepts.

Derivative Calculator

Calculate derivatives of functions with respect to one or more variables. Our calculator supports both single and multivariable calculus, providing step-by-step solutions.

Error: Please check your input and try again.

Calculating derivative...

Derivative Results

Original Function:
Derivative:
Simplified Form:

Step-by-Step Solution:

Derivative Formulas

Basic Rules

$$\frac{d}{dx}(c) = 0$$ (constant rule)

$$\frac{d}{dx}(x) = 1$$ (identity rule)

$$\frac{d}{dx}(x^n) = nx^{n-1}$$ (power rule)

$$\frac{d}{dx}(e^x) = e^x$$ (exponential rule)

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$$ (natural log rule)

Trigonometric Functions

$$\frac{d}{dx}(\sin(x)) = \cos(x)$$

$$\frac{d}{dx}(\cos(x)) = -\sin(x)$$

$$\frac{d}{dx}(\tan(x)) = \sec^2(x)$$

$$\frac{d}{dx}(\cot(x)) = -\csc^2(x)$$

$$\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x)$$

$$\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)$$

Derivative Rules

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$ (sum rule)

$$\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx}g(x) + g(x) \cdot \frac{d}{dx}f(x)$$ (product rule)

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot \frac{d}{dx}f(x) - f(x) \cdot \frac{d}{dx}g(x)}{[g(x)]^2}$$ (quotient rule)

$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$$ (chain rule)

Inverse Trigonometric Functions

$$\frac{d}{dx}(\arcsin(x)) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\arccos(x)) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\arctan(x)) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\text{arccot}(x)) = -\frac{1}{1+x^2}$$

$$\frac{d}{dx}(\text{arcsec}(x)) = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}(\text{arccsc}(x)) = -\frac{1}{|x|\sqrt{x^2-1}}$$

Integral Calculator

Calculate indefinite and definite integrals of functions. Our calculator provides step-by-step solutions and visualizations of the integration process.

Error: Please check your input and try again.

Calculating indefinite integral...

Indefinite Integral Results

Original Function:
Indefinite Integral:

Step-by-Step Solution:

Integration Formulas

Basic Integrals

$$\int c \, dx = cx + C$$ (constant rule)

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$ for $$n \neq -1$$ (power rule)

$$\int \frac{1}{x} \, dx = \ln|x| + C$$ (logarithmic rule)

$$\int e^x \, dx = e^x + C$$ (exponential rule)

$$\int a^x \, dx = \frac{a^x}{\ln(a)} + C$$ (general exponential rule)

Trigonometric Integrals

$$\int \sin(x) \, dx = -\cos(x) + C$$

$$\int \cos(x) \, dx = \sin(x) + C$$

$$\int \tan(x) \, dx = -\ln|\cos(x)| + C = \ln|\sec(x)| + C$$

$$\int \cot(x) \, dx = \ln|\sin(x)| + C$$

$$\int \sec(x) \, dx = \ln|\sec(x) + \tan(x)| + C$$

$$\int \csc(x) \, dx = \ln|\csc(x) - \cot(x)| + C$$

Integration Rules

$$\int [f(x) + g(x)] \, dx = \int f(x) \, dx + \int g(x) \, dx$$ (sum rule)

$$\int cf(x) \, dx = c \int f(x) \, dx$$ (constant multiple rule)

Integration by parts: $$\int u \, dv = uv - \int v \, du$$

Integration by substitution: $$\int f(g(x))g'(x) \, dx = \int f(u) \, du$$ where $$u = g(x)$$

Inverse Trigonometric Integrals

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin(x) + C$$

$$\int \frac{-1}{\sqrt{1-x^2}} \, dx = \arccos(x) + C$$

$$\int \frac{1}{1+x^2} \, dx = \arctan(x) + C$$

$$\int \frac{1}{x\sqrt{x^2-1}} \, dx = \text{arcsec}(x) + C$$ for $$|x| > 1$$

Limit Calculator

Calculate limits of functions as they approach specific values or infinity. Our calculator provides step-by-step solutions and visualizations of the limiting behavior.

Error: Please check your input and try again.

Calculating limit...

Limit Results

Original Function:
Limit Expression:
Limit Value:

Step-by-Step Solution:

Limit Formulas and Techniques

Basic Limit Properties

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$ if $$\lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$

Special Limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{1-\cos(x)}{x} = 0$$

$$\lim_{x \to 0} \frac{e^x-1}{x} = 1$$

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

$$\lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x = e$$

Techniques for Evaluating Limits

Direct Substitution: If $$f$$ is continuous at $$a$$, then $$\lim_{x \to a} f(x) = f(a)$$

Factoring: For algebraic expressions with common factors

Rationalization: For expressions with radicals

L'Hôpital's Rule: For indeterminate forms $$\frac{0}{0}$$ or $$\frac{\infty}{\infty}$$

Squeeze Theorem: If $$g(x) \leq f(x) \leq h(x)$$ and $$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$$, then $$\lim_{x \to a} f(x) = L$$

Limits at Infinity

For rational functions $$\frac{P(x)}{Q(x)}$$ as $$x \to \infty$$, compare the highest degree terms

$$\lim_{x \to \infty} \frac{a_n x^n + \ldots + a_1 x + a_0}{b_m x^m + \ldots + b_1 x + b_0}$$

If $$n < m$$: Limit is 0

If $$n = m$$: Limit is $$\frac{a_n}{b_m}$$

If $$n > m$$: Limit is $$\infty$$ or $$-\infty$$

Sequence Calculator

Analyze and compute sequences, find patterns, and determine convergence or divergence. Our calculator provides step-by-step solutions and visualizations of sequence behavior.

Error: Please check your input and try again.

Calculating sequence...

Sequence Results

Sequence Formula:
First Few Terms:
Convergence Analysis:
Sum of First n Terms:

Sequence Formulas and Properties

Common Sequences

Arithmetic Sequence: $$a_n = a_1 + (n-1)d$$

Geometric Sequence: $$a_n = a_1 \cdot r^{n-1}$$

Fibonacci Sequence: $$F_n = F_{n-1} + F_{n-2}$$ with $$F_1 = F_2 = 1$$

Harmonic Sequence: $$a_n = \frac{1}{n}$$

Square Numbers: $$a_n = n^2$$

Triangular Numbers: $$a_n = \frac{n(n+1)}{2}$$

Sequence Sums

Arithmetic Series: $$\sum_{i=1}^{n} a_i = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}[2a_1 + (n-1)d]$$

Geometric Series: $$\sum_{i=1}^{n} a_i = a_1 \frac{1-r^n}{1-r}$$ for $$r \neq 1$$

Infinite Geometric Series: $$\sum_{i=1}^{\infty} a_i = \frac{a_1}{1-r}$$ for $$|r| < 1$$

Sum of Squares: $$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Sum of Cubes: $$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Convergence Tests

Limit Test: If $$\lim_{n \to \infty} a_n = L$$ exists, the sequence converges to $$L$$

Monotone Convergence Theorem: A bounded monotonic sequence converges

Ratio Test: If $$\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = r$$

- If $$r < 1$$, the series converges absolutely

- If $$r > 1$$ or $$r = \infty$$, the series diverges

- If $$r = 1$$, the test is inconclusive

Special Sequences

Catalan Numbers: $$C_n = \frac{1}{n+1}\binom{2n}{n}$$

Bernoulli Numbers: Complex sequence related to sum of powers

Bell Numbers: Number of partitions of a set with n elements

Stirling Numbers: Related to permutations and combinations

Lucas Numbers: Similar to Fibonacci but with $$L_1 = 1, L_2 = 3$$

Series Calculator

Calculate sums of infinite series and determine convergence or divergence. Our calculator provides step-by-step solutions and visualizations of series behavior.

Error: Please check your input and try again.

Calculating sum...

Finite Sum Results

Sum Expression:
Sum Value:
Individual Terms:
Partial Sums:

Series Formulas and Convergence Tests

Common Series

Geometric Series: $$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$ for $$|r| < 1$$

p-Series: $$\sum_{n=1}^{\infty} \frac{1}{n^p}$$ converges if $$p > 1$$, diverges if $$p \leq 1$$

Harmonic Series: $$\sum_{n=1}^{\infty} \frac{1}{n}$$ (diverges)

Alternating Harmonic Series: $$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln(2)$$

Basel Problem: $$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Convergence Tests

Comparison Test: Compare with a known convergent/divergent series

Limit Comparison Test: Compare limits of terms

Ratio Test: Examine $$\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right|$$

Root Test: Examine $$\lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Integral Test: Compare series with an integral

Alternating Series Test: For alternating series with decreasing terms

Power Series

Form: $$\sum_{n=0}^{\infty} a_n (x-c)^n$$

Radius of Convergence: Value $$R$$ such that the series converges for $$|x-c| < R$$

Interval of Convergence: Range of $$x$$ values for which the series converges

Term-by-term Differentiation: $$\frac{d}{dx}\sum_{n=0}^{\infty} a_n (x-c)^n = \sum_{n=1}^{\infty} n a_n (x-c)^{n-1}$$

Term-by-term Integration: $$\int \sum_{n=0}^{\infty} a_n (x-c)^n dx = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^{n+1}$$

Taylor Series

Taylor Series at $$x = c$$: $$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

Maclaurin Series (Taylor at $$x = 0$$): $$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Common Maclaurin Series:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots$$

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots$$

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots$$

Calculus & Analysis Examples

Product Rule Derivative

Calculate the derivative of f(x) = x² · sin(x) using the product rule.

Try Example

Definite Integral

Calculate the definite integral of x² from 0 to 1.

Try Example

Limit at Infinity

Find the limit of (3x² + 2x) / (x² + 1) as x approaches infinity.

Try Example

Fibonacci Sequence

Analyze the Fibonacci sequence and its properties.

Try Example

Connect With Us